China wholesaler 1.8 Degree 2 Phase NEMA23 Hybrid Servo Stepper Motor 1.89n. M Closed Loop Stepper Stepping Step Motors with Encoder Brake Planetary Gearbox for 3D Printer manufacturer

Product Description

 

1.8 Degree 2 Phase NEMA23 Hybrid Servo Stepper Motor 1.89n. M Closed Loop Stepper Stepping Step Motors with Encoder Brake Planetary Gearbox for 3D Printer

Product Description

GenHangZhou Specification
Item Specifications
Step Angle 1.8° or 0.9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance 100 MΩ Min. ,500VDC
Dielectric Strength 500VAC for 1minute
Shaft Radial Play 0.02Max. (450g-load)
Shaft Axial Play 0.08Max. (450g-load)
Max. radial force 75N (20mm from the flange)
Max. axial force 15N

 

1. The magnetic steel is high grade,we usually use the SH level type.
2. The rotor is be coated,reduce burrs,working smoothly,less noise. We test the stepper motor parts step by step.
3. Stator is be test and rotor is be test before assemble.
4. After we assemble the stepper motor, we will do 1 more test for it, to make sure the quality is good.

JKONGMOTOR stepping motor is a motor that converts electrical pulse signals into corresponding angular displacements or linear displacements. This small stepper motor can be widely used in various fields, such as a 3D printer, stage lighting, laser engraving, textile machinery, medical equipment, automation equipment, etc.

1.8 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH N.m No. g.cm g.cm2 Kg
JK57HS41-1006 1.8 41 1 7.1 8 0.48 6 250 150 0.47
JK57HS41-2008 1.8 41 2 1.4 1.4 0.39 8 250 150 0.47
JK57HS41-2804 1.8 41 2.8 0.7 1.4 0.55 4 250 150 0.47
JK57HS51-1006 1.8 51 1 6.6 8.2 0.72 6 300 230 0.59
JK57HS51-2008 1.8 51 2 1.8 2.7 0.9 8 300 230 0.59
JK57HS51-2804 1.8 51 2.8 0.83 2.2 1.01 4 300 230 0.59
JK57HS56-2006 1.8 56 2 1.8 2.5 0.9 6 350 280 0.68
JK57HS56-2108 1.8 56 2.1 1.8 2.5 1 8 350 280 0.68
JK57HS56-2804 1.8 56 2.8 0.9 2.5 1.2 4 350 280 0.68
JK57HS64-2804 1.8 64 2.8 0.8 2.3 1 4 400 300 0.75
JK57HS76-2804 1.8 76 2.8 1.1 3.6 1.89 4 600 440 1.1
JK57HS76-3006 1.8 76 3 1 1.6 1.35 6 600 440 1.1
JK57HS76-3008 1.8 76 3 1 1.8 1.5 8 600 440 1.1
JK57HS82-3004 1.8 82 3 1.2 4 2.1 4 1000 600 1.2
JK57HS82-4008 1.8 82 4 0.8 1.8 2 8 1000 600 1.2
JK57HS82-4204 1.8 82 4.2 0.7 2.5 2.2 4 1000 600 1.2
JK57HS100-4204 1.8 100 4.2 0.75 3 3 4 1100 700 1.3
JK57HS112-3004 1.8 112 3 1.6 7.5 3 4 1200 800 1.4
JK57HS112-4204 1.8 112 4.2 0.9 3.8 3.1 4 1200 800 1.4

0.9 Degree Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK57HM41-1006 0.9 41 1 5.7 8 3.9 6 210 120 0.45
JK57HM41-2804 0.9 41 2.8 0.7 2.2 5 4 210 120 0.45
JK57HM51-2006 0.9 51 2 1.6 2.2 7.2 6 380 280 0.68
JK57HM56-1006 0.9 56 1 7.4 17.5 9 6 400 300 0.7
JK57HM56-2006 0.9 56 2 1.8 4.5 9 6 400 300 0.7
JK57HM56-2804 0.9 56 2.8 0.9 3.3 12 4 400 300 0.7
JK57HM76-1006 0.9 76 1 8.6 23 13.5 6 680 480 1
JK57HM76-2006 0.9 76 2 3 7 13.5 6 680 480 1
JK57HM76-2804 0.9 76 2.8 1.15 5.6 18 4 680 480 1

 

3 Phase Nema 23 Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm g.cm g.cm2 Kg
JK57H3P42-5206 1.2 42 5.2 1.3 1.4 4.5 210 110 0.45
JK57H3P56-5606 1.2 56 5.6 0.7 0.7 9 400 300 0.75
JK57H3P79-5206 1.2 79 5.2 0.9 1.5 15 680 480 1.1

 

Nema 23 Round Type Stepper Motor Parameters:

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK57HY41-0406 1.8 41 0.4 30 30 2.88 6 180 57 0.54
JK57HY41-1564 1.8 41 1.56 1.8 3.6 4 4 180 57 0.54
JK57HY51-0426 1.8 51 0.42 29 36 4.97 6 350 110 0.6
JK57HY51-2804 1.8 51 2.8 0.85 2.1 6.9 4 350 110 0.6
JK57HY56-0606 1.8 56 0.6 20 32 6 6 420 135 0.65
JK57HY56-2004 1.8 56 2 3 7 8 4 420 135 0.65
JK57HY76-1506 1.8 76 1.5 3.6 6 9 6 720 200 0.95
JK57HY76-4004 1.8 76 4 0.88 2.6 14 4 720 200 0.95

 

Jkongmotor Other Hybrid Stepper Motor:

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

 

Stepping Motor Customized

Detailed Photos

                                       Brushless Dc Motor Kit                                                                      Stepper Motor with Encoder

                   Linear Stepper Motor                              3 4 Axis Stepper Motor Kits                       Hollow Shaft Stepper Motor

 

                        Bldc Motor                                              Brushed Dc Motor                                      Hybrid Stepper Motor                                   

 

Company Profile

HangZhou CZPT Co., Ltd was a high technology industry zone in HangZhou, china. Our products used in many kinds of machines, such as 3d printer CNC machine, medical equipment, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to establish long-term cooperation with us.
Company spirit of sincere and good reputation, won the recognition and support of the broad masses of customers, at the same time with the domestic and foreign suppliers close community of interests, the company entered the stage of stage of benign development, laying a solid foundation for the strategic goal of realizing only really the sustainable development of the company.

Equipments Show:
Production Flow:
Package:
Certification:

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller
Customization:
Available

|

Customized Request

Motor

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China wholesaler 1.8 Degree 2 Phase NEMA23 Hybrid Servo Stepper Motor 1.89n. M Closed Loop Stepper Stepping Step Motors with Encoder Brake Planetary Gearbox for 3D Printer   manufacturer China wholesaler 1.8 Degree 2 Phase NEMA23 Hybrid Servo Stepper Motor 1.89n. M Closed Loop Stepper Stepping Step Motors with Encoder Brake Planetary Gearbox for 3D Printer   manufacturer
editor by CX 2023-05-08