China Standard Three Phase Asynchronous 3 Phase Motor with Hot selling

Product Description

Product Parameters

Ms series aluminum housing 3 phase asychronous motor ,with latest design in entirely ,are made of selected quality materials and conform to IEC standard.

 MS motor have good performance ,safety and reliable operation ,nice appearance ,and can be maintained very conveniently ,while with low noise ,little vibration and at the same time light weight and simple construction .these motors can be used for general drive 

Ambient Temperature

-15ºC≤0≤40ºC

Altitude

Not exceeding 1000 CHINAMFG

Rated Voltage

380V±5%,220V±5%

Protection Type

IP44/IP54

Connection

Y Start-Connection for 3 Kw and below

Y Date-Connection for 3 Kw or more

Cooling Type 

IC0141

Insulation Class

Class B/Class F/Class H

Rated Frequency

50Hz/60Hz

Duty/Rating

Continuous(S1) Or customized 

The terminal box IP55

Model Rated power Current Power factor Efficiency speed Locked Rotor
 torque
Locked Rot or Current Breskdown Torque
Type (KW) (A) (cosΦ) (η%) (r/min) Tst
TN
Ist
TN
Tmax
TN
synchronous speed 3000r/min(380V 50HZ)
YS/MS561-2 0.09 0.29 0.77 62 2750 2.2 5.2 2.1
YS/MS562-2 0.12 0.37 0.78 64 2750 2.2 5.2 2.1
YS/MS631-2 0.18 0.53 0.8 65 2780 2.3 5.5 2.3
YS/MS632-2 0.25 0.69 0.81 68 2780 2.3 5.5 2.3
YS/MS711-2 0.37 1.01 0.81 69 2800 2.2 6.1 2.3
YS/MS712-2 0.55 1.38 0.82 74 2800 2.3 6.1 2.3
YS/MS801-2 0.75 1.77 0.83 75 2825 2.3 6.1 2.2
YS/MS802-2 1.1 2.46 0.84 76.2 2825 2.3 6.9 2.2
YS/MS90S-2 1.5 3.46 0.84 78.5 2840 2.3 7.0  2.2
YS/MS90L-2 2.2 4.85 0.85 81 2840 2.3 7.0  2.2
YS/MS100L-2 3 6.34 0.87 82.6 2880 2.3 7.5 2.2
YS/MS112M-2 4 8.20  0.88 84.2 2890 2.3 7.5 2.2
YS/MS132S1-2 5.5 11.1 0.88 85.7 2900 2.3 7.5 2.2
YS/MS132S2-2 7.5 14.9 0.88 87 2900 2.3 7.5 2.2
YS/MS160M1-2 11 21.2 0.89 88.4 2947 2.3 7.5 2.2
YS/MS160M2-2 15 28.6 0.89 89.4 2947 2.3 7.5 2.2
YS/MS160L-2 18.5 34.7 0.90  90 2947 2.3 7.5 2.2
synchronous speed 1500 r/min(380V 50HZ)
YS/MS561-4 0.06 0.23 0.70  56 1300 2.1 4.0  2.0 
YS/MS562-4 0.09 0.33 0.72 58 1300 2.1 4.0  2.0 
YS/MS631-4 0.12 0.44 0.72 57 1330 2.2 4.4 2.1
YS/MS632-4 0.18 0.62 0.73 60 1330 2.2 4.4 2.1
YS/MS711-4 0.25 0.79 0.74 65 1360 2.2 5.2 2.1
YS/MS712-4 0.37 1.12 0.75 67 1360 2.2 5.2 2.1
YS/MS801-4 0.55 1.52 0.75 71 1380 2.3 5.2 2.4
YS/MS802-4 0.75 1.95 0.76 73 1380 2.3 6.0  2.3
YS/MS90S-4 1.1 2.85 0.77 76.2 1390 2.3 6.0  2.3
YS/MS90L-4 1.5 3.72 0.78 78.2 1390 2.3 6.0  2.3
YS/MS100L1-4 2.2 5.09 0.81 81 1410 2.3 7.0  2.3
YS/MS100L2-4 3 6.78 0.82 82.6 1410 2.3 7.0  2.3
YS/MS112M-4 4 8.8 0.82 84.6 1435 2.3 7.0  2.3
YS/MS132S1-4 5.5 11.7 0.83 85.7 1445 2.3 7.0  2.3
YS/MS132S2-4 7.5 15.6 0.84 87 1445 2.3 7.0  2.3
YS/MS160M-4 11 22.5 0.84 88.4 1460 2.2 7.0  2.3
YS/MS160L-4 15 30.0  0.85 89.4 1460 2.2 7.5 2.3
                 
Model Rated power Current Power factor Efficiency speed Locked Rotor
 torque
Locked Rot or Current Breskdown Torque
Type (KW) (A) (cosΦ) (η%) (r/min) Tst
TN
Ist
TN
Tmax
TN
synchronous speed 1000 r/min(380V 50HZ)
YS/MS711-6 0.18 0.74 0.66 56 900 2.0  4.0  1.9
YS/MS712-6 0.25 0.95 0.68 59 900 2.0  4.0  1.9
YS/MS801-6 0.37 1.23 0.70  62 900 2.0  4.7 1.8
YS/MS802-6 0.55 1.70  0.72 65 900 2.1 4.7 1.8
YS/MS90S-6 0.75 2.29 0.72 69 900 2.1 5.3 2.0 
YS/MS90L-6 1.1 3.18 0.73 72 910 2.1 5.5 2.0 
YS/MS100L-6 1.5 4.0  0.76 76 910 2.1 5.5 2.0 
YS/MS112M-6 2.2 5.6 0.76 79 940 2.1 6.5 2.0 
YS/MS132S-6 3 7.40  0.76 81 940 2.1 6.5 2.1
YS/MS132M1-6 4 9.5 0.76 82 960 2.1 6.5 2.1
YS/MS132M2-6 5.5 12.6 0.77 84 960 2.1 6.5 2.1
YS/MS160M-6 7.5 17.2 0.77 86 960 2.0  6.5 2.1
YS/MS160L-6 11 24.5 0.78 87.5 960 2.0  6.5 2.1
synchronous speed 750 r/min(380V 50HZ)
YS/MS801-8 0.18 0.83 0.61 51 630 1.9 3.3 1.8
YS/MS802-8 0.25 1.10  0.61 54 640 1.9 3.3 1.8
YS/MS90S-8 0.37 1.49 0.61 62 660 1.9 4.0  1.8
YS/MS90L-8 0.55 2.17 0.61 63 660 2.0  4.0  1.8
YS/MS100L1-8 0.75 2.43 0.67 70 690 2.0  4.0  1.8
YS/MS100L2-8 1.1 3.36 0.69 72 690 2.0  5.0  1.8
YS/MS112M-8 1.5 4.40  0.70  74 680 2.0  5.0  1.8
YS/MS132S-8 2.2 6.00  0.71 79 710 2.0  6.5 1.8
YS/MS132M-8 3 7.80  0.73 80 710 2.0  6.5 1.8
YS/MS160M1-8 4 10.3 0.73 81 720 2.0  6.6  2.0 
YS/MS160M2-8 5.5 13.6 0.74 83 720 2.0  6.6  2.0 
YS/MS160L-8 7.5 17.8 0.75 85.5 720 2.0  6.6 2.0 

Detailed Photos

FAQ

Q: Where is Your factory?
A: HangZhou city, ZHangZhoug Province.
 
Q: Do you accept OEM/ODM service?
A: Yes, avaliable.
 
Q: Are you trading company or manufacturer?
A: We are a manufacturer.
 
Q: What about the shipment?
A: By sea, By air and By express delivery.
 
Q: What is the delivery time?
A: It depends on the order quantity, usually 35days after confirmation.
 
Q: Can I buy different products in 1 container?
A: Yes, but no more than 5 models.
 
Q: What is the warranty time?
A: One year.

Q: Can you offer the sample?
A: Of course we can.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Power Tools, Car
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 36.93/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

3 phase motor

How does a 3-phase motor ensure efficient and reliable operation?

A 3-phase motor is designed to ensure efficient and reliable operation through various mechanisms and features. Here’s a detailed explanation of how a 3-phase motor achieves efficient and reliable performance:

  • Rotating Magnetic Field: One of the key factors that contribute to the efficiency and reliability of a 3-phase motor is the creation of a rotating magnetic field. The three sets of stator windings, spaced 120 degrees apart, are energized by the three-phase power supply. This arrangement generates a rotating magnetic field within the motor. The rotating magnetic field interacts with the rotor, inducing currents that create torque and drive the rotation of the motor. The creation of a rotating magnetic field allows for smooth and efficient operation, minimizing vibrations and maximizing power output.
  • Higher Power Output: Compared to single-phase motors, 3-phase motors are capable of delivering higher power output. The balanced three-phase power supply and the design of the motor allow for efficient power transmission and higher torque production. This higher power output makes 3-phase motors suitable for applications that require greater horsepower and torque, such as industrial machinery, pumps, and compressors.
  • Efficiency: 3-phase motors are known for their high efficiency. The balanced three-phase power supply and the design of the motor contribute to reduced power losses and improved efficiency. The rotating magnetic field generated by the stator windings ensures smooth operation and minimizes energy wastage. As a result, 3-phase motors convert a higher percentage of electrical energy into mechanical energy, leading to energy savings and cost efficiency in the long run.
  • Reliable Starting Mechanism: 3-phase motors have a reliable starting mechanism that allows them to start on their own. With a simple direct-on-line (DOL) starting method, the motor can be connected directly to the power supply without the need for additional starting mechanisms. This ensures reliable and prompt motor startup, eliminating the need for manual intervention or complex starting circuits.
  • High Starting Torque: 3-phase motors typically exhibit high starting torque, which is crucial for overcoming the inertia and initial resistance of the connected load. The balanced three-phase power supply and the design of the motor enable the creation of a strong rotating magnetic field during startup. This results in a higher starting torque compared to single-phase motors, ensuring efficient and reliable motor operation even under heavy load conditions.
  • Durable Construction: 3-phase motors are constructed with durability in mind. The stator and rotor cores are made of laminated iron to minimize eddy current losses and improve magnetic performance. The windings are typically coated with insulating materials to protect them from environmental factors and ensure proper insulation. The motor housing or frame is designed to provide protection and support to the internal components. These design features contribute to the reliability and longevity of 3-phase motors in various operating conditions.
  • Thermal Protection: Many 3-phase motors incorporate thermal protection mechanisms to prevent overheating. These mechanisms may include thermal overload relays, temperature sensors, or embedded thermal switches. If the motor temperature exceeds a safe threshold, the thermal protection system activates and interrupts the power supply to prevent damage to the motor. This ensures reliable operation by preventing motor failure due to excessive heat.
  • Proper Maintenance and Lubrication: Regular maintenance and proper lubrication are essential for ensuring the efficient and reliable operation of 3-phase motors. Periodic inspections, cleaning, and lubrication of bearings, as well as checking the electrical connections and insulation, help maintain optimal motor performance and prevent premature failures. Following manufacturer guidelines and adhering to recommended maintenance practices contribute to the longevity and reliability of the motor.

These factors collectively contribute to the efficient and reliable operation of 3-phase motors. Their ability to deliver higher power output, high starting torque, and energy efficiency, combined with durable construction and proper maintenance, make 3-phase motors a preferred choice for a wide range of industrial, commercial, and residential applications.

3 phase motor

What maintenance practices are essential for prolonging the lifespan of a 3-phase motor?

Proper maintenance is crucial for prolonging the lifespan and ensuring the reliable performance of a 3-phase motor. Here are some essential maintenance practices that should be followed:

  • Regular Cleaning: Keep the motor and its surrounding area clean and free from dust, dirt, and debris. Regularly inspect and clean the motor’s exterior, ventilation openings, and cooling fins. This helps prevent the accumulation of contaminants that can interfere with the motor’s cooling and ventilation, leading to overheating and reduced efficiency.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication intervals and use the specified lubricants. Proper lubrication of bearings, gears, and other moving parts reduces friction, minimizes wear and tear, and ensures smooth operation. Inspect and replenish lubricants as needed, taking care not to over-lubricate, which can cause excessive heat buildup.
  • Vibration Analysis: Monitor motor vibrations regularly using vibration analysis techniques. Excessive vibration can indicate misalignment, worn bearings, or other mechanical issues. By detecting and addressing vibration problems early on, potential failures can be prevented, and the motor’s lifespan can be prolonged.
  • Electrical Inspections: Periodically inspect the motor’s electrical connections, terminals, and wiring for signs of wear, loose connections, or overheating. Tighten any loose connections and address any abnormalities promptly. Electrical inspections help prevent electrical failures and ensure safe and efficient motor operation.
  • Temperature Monitoring: Monitor the motor’s operating temperature using temperature sensors or thermal imaging. Abnormally high temperatures can indicate issues such as overload, insufficient cooling, or bearing problems. Regular temperature monitoring allows for timely identification of potential problems and the implementation of corrective measures.
  • Alignment and Balancing: Ensure the motor is properly aligned with the driven equipment, such as pumps or fans. Misalignment can cause excessive stress on the motor shaft and bearings, leading to premature failure. Additionally, balance any rotating components, such as fan blades or impellers, to reduce vibrations and strain on the motor.
  • Inspect and Replace Worn Parts: Regularly inspect the motor’s components, such as belts, pulleys, brushes, and capacitors, for signs of wear, damage, or deterioration. Replace any worn or damaged parts promptly to prevent further damage to the motor and ensure optimal performance.
  • Preventive Maintenance Schedule: Establish a preventive maintenance schedule based on the manufacturer’s recommendations and the motor’s operating conditions. This schedule should include routine inspections, lubrication, cleaning, and testing. Adhering to a regular maintenance routine helps identify potential issues early on and allows for timely repair or replacement, thus extending the motor’s lifespan.
  • Training and Documentation: Ensure that maintenance personnel are properly trained in motor maintenance procedures and safety protocols. Maintain detailed documentation of maintenance activities, including dates, observations, and performed tasks. This documentation provides a historical record of maintenance activities and facilitates troubleshooting and future maintenance efforts.
  • Environmental Considerations: Protect the motor from harsh environmental conditions, such as excessive heat, humidity, dust, or corrosive substances. If the motor is exposed to such conditions, consider implementing protective measures, such as enclosures, ventilation systems, or sealing, to safeguard the motor and prolong its lifespan.

By implementing these maintenance practices, motor owners can maximize the lifespan, reliability, and performance of their 3-phase motors. Regular inspections, cleaning, lubrication, and addressing any identified issues promptly are key to ensuring optimal motor operation and minimizing the risk of unexpected failures.

3 phase motor

Can 3-phase motors be integrated with advanced control systems and automation?

Yes, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies. Here’s a detailed explanation of their compatibility and integration capabilities:

  • Variable Frequency Drives (VFDs):
    • 3-phase motors can be coupled with VFDs, which are advanced control devices that provide precise control over motor speed and torque. VFDs convert the incoming AC power into DC and then generate variable voltage and frequency outputs to the motor. This allows for smooth and accurate speed regulation, making 3-phase motors suitable for applications requiring speed control, such as conveyor systems, pumps, and fans.
    • VFDs can be integrated into automation systems through various communication protocols such as Modbus, Profibus, or Ethernet. This enables real-time monitoring, control, and coordination of motor performance within the overall automation network.
  • Programmable Logic Controllers (PLCs):
    • 3-phase motors can be integrated with PLCs, which are industrial digital computers used for automation and control purposes. PLCs can be programmed to monitor and control the operation of 3-phase motors based on specific conditions, inputs, and logic sequences.
    • PLCs can receive feedback signals from sensors or other devices to monitor motor performance, temperature, vibration, and other relevant parameters. Based on this feedback, the PLC can initiate control actions or activate protective functions to ensure optimal motor operation.
    • Integration with PLCs allows for centralized control, data logging, and the ability to interface with other automation devices and systems. This facilitates seamless integration of 3-phase motors into larger automated processes or production lines.
  • Industrial Communication Protocols:
    • 3-phase motors can be integrated into advanced control systems using various industrial communication protocols, such as Modbus, Profibus, DeviceNet, EtherCAT, or Profinet. These protocols enable data exchange and communication between the motor and other devices or systems within the automation network.
    • By utilizing these communication protocols, 3-phase motors can provide real-time feedback on parameters such as motor speed, torque, temperature, and operating conditions. This data can be used for condition monitoring, predictive maintenance, and optimization of motor performance.
    • Integration with industrial communication protocols allows for seamless connectivity, interoperability, and coordination between 3-phase motors and other automation components, such as sensors, actuators, HMIs (Human-Machine Interfaces), and supervisory control systems.
  • Remote Monitoring and Control:
    • The integration of 3-phase motors with advanced control systems and automation technologies enables remote monitoring and control capabilities. Motor parameters and performance data can be accessed and monitored from a central control room or through web-based interfaces.
    • Remote monitoring allows for real-time status updates, fault diagnostics, and performance optimization of 3-phase motors. It enables proactive maintenance and troubleshooting, leading to increased uptime and improved efficiency.
    • Advanced control systems and automation technologies also facilitate remote control of 3-phase motors, allowing operators or system administrators to adjust motor settings, initiate start/stop commands, or modify control parameters from a centralized location.

Overall, 3-phase motors can be seamlessly integrated with advanced control systems and automation technologies, such as VFDs, PLCs, industrial communication protocols, and remote monitoring/control capabilities. This integration enables precise control, real-time monitoring, and coordination of motor performance within automated processes and systems, leading to enhanced efficiency, productivity, and flexibility in industrial applications.

China Standard Three Phase Asynchronous 3 Phase Motor   with Hot selling	China Standard Three Phase Asynchronous 3 Phase Motor   with Hot selling
editor by CX 2024-05-16