China factory Mirco Brushless BLDC DC Induction Electric High Speed Power Fan Motor with RoHS CE Single Phase AC Electrical Fan Permanent Magnet DC Motor for Solar Panel manufacturer

Product Description

Product Description

5730 Brushelss dc motor With Blower

Motor Description:

1.Motor Insulation Resistance DC500(V) 1(SEC)1(mA)MAX
2.Noise <30dB
3.Operating Condition:Ambient -5~60ºC
3.Storage condition:Ambient temperature -10~125ºC,humidity 10-95%
4.Max coil temperature:105ºC
5.Maxo MCU furface temperature 85ºC
6.Life test:15000hours(no load)
7.Working life :10000hours 

8.Our motors performance(data) are per customers` requirments.
9.Motor wires are cooper and some could be used aluminium wire to save cost
10.Motors could be used ball bearing and oil bear(Sleeve bearing) both.
11.Stators could be cold steel and silicon steel
12.We can use both one-shot thermal fuse and recoverable thermal fuse
13.Our AC motors are of high efficiency, superior quality, low energy consumption,  long life and competitive price.
 

Product Parameters

 

Model Rated 
Voltage
Rated 
Speed
Rated
 Current
Minmum 
working voltage
Max
 Working Voltage
No Load
 Speed
No Load
 Current
Weight
5730 24VDC 4000RPM 2A 9VDC 32DC 4500RPM 0.29A 740g

Recommend products

 

 

Packaging & Shipping

 

Certifications

 

Workshop Show

 

    Fine Watt motor focus on offering motor solutions to smart products for home appliance ,like BLDC,Capacitor motor,shaded pole motor,universal motor and mini generator. Our motors are widely used in kitchen,air conditional,Ice chest,washing machine,etc. Customers locate not only in China domestic ,also oversea from Asia to European and  Amecica. Our engineer with 20 years experience in motor design and development,win a lot of motor inovation technology award,Our engineer also provide technical support to other big facotry.we believe we always can find the best solution for your product.

 

FAQ

 

Company FAQ

(1) Q: What kind motors you can provide?
A:For now,we mainly provide Kitchen Hood Motor,DC Motor,Gear Motor,Fan Motor Refrigerator Motor,Hair Dryer Motor Blender Motor Mixer Motor,
BLDC Motor,Shade Pole Motor,Capacitor Motor, PMDC Motor,Synchronous Motor,etc

(2) Q: Is it possible to visit your factory
A: Sure. We always like to meet our customer face to face,this is better for understanding.But please kindly keep us posted a few days in advance so we can make good arrangement.

(3) Q: Can I get some samples
A: It depends. If only a few samples for personal use or replacement, I am afraid it will be difficult for us to provide, because all of our motors are custom made and no stock available if there is no further needs. If just sample testing before the official order and our MOQ, price and other terms are acceptable, we will provide samples.

(4) Q: Is there a MOQ for your motors?
A: Yes. The MOQ is between 1000~10,000pcs for different models after sample approval.
But it’s also okay for us to accept smaller lots like a few dozens, hundreds or thousands
For the initial 3 orders after sample approval.For samples, there is no MOQ requirement. But the less the better (like no more than 5pcs) on condition that the quantity is enough in case any changes needed after initial testing.
 

(5)Q: What advantage do you have?

A: For motors, we have quality guarantee, if there is probelm motor after inspection in customer house,we will   replace .
    For service, we offer 24 hours technical support and barrier-free communication with excellent service people.
    Technical service: Except offer actual motor products,we can also offer motor technical supporting seperately  to our customer.Our   engineers are represent the most advanced techonogy.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

3 phase motor

How do 3-phase motors differ from single-phase motors?

3-phase motors and single-phase motors differ in several aspects, including their power supply, construction, performance characteristics, and applications. Here’s a detailed explanation of the differences between 3-phase motors and single-phase motors:

  • Power Supply: The primary difference between 3-phase motors and single-phase motors is their power supply. 3-phase motors require a three-phase power supply, which consists of three alternating current (AC) voltage waveforms that are 120 degrees out of phase with each other. In contrast, single-phase motors operate on a single-phase power supply, which consists of a single AC voltage waveform.
  • Construction: The construction of 3-phase motors and single-phase motors also differs. 3-phase motors have three sets of windings evenly spaced around the motor’s stator, whereas single-phase motors typically have only one set of windings. The multiple windings in 3-phase motors enable the creation of a rotating magnetic field, which is essential for their operation.
  • Starting Mechanism: 3-phase motors and single-phase motors have different starting mechanisms. 3-phase motors can start on their own with a simple direct-on-line (DOL) starting method, where the motor is connected directly to the power supply. In contrast, single-phase motors require additional starting mechanisms, such as capacitors or centrifugal switches, to overcome the need for a rotating magnetic field during startup.
  • Starting Torque: 3-phase motors tend to have higher starting torque compared to single-phase motors. The balanced three-phase power supply and the design of 3-phase motors allow them to produce a strong rotating magnetic field, enabling efficient starting and acceleration. Single-phase motors, on the other hand, often experience lower starting torque due to the absence of a rotating magnetic field during startup.
  • Efficiency: In terms of efficiency, 3-phase motors are generally more efficient than single-phase motors. The balanced three-phase power supply and the design of 3-phase motors result in smoother operation and reduced losses compared to single-phase motors. This higher efficiency translates to better performance and energy savings in applications where 3-phase motors are utilized.
  • Power Rating: 3-phase motors are commonly available in higher power ratings compared to single-phase motors. The ability of 3-phase motors to deliver higher power output makes them suitable for applications that require greater torque and horsepower, such as heavy-duty industrial machinery and equipment. Single-phase motors are typically used in lower power applications, such as household appliances and small tools.
  • Applications: The applications of 3-phase motors and single-phase motors also differ. 3-phase motors are widely used in industrial and commercial applications, including pumps, compressors, HVAC systems, electric vehicles, and robotics. Single-phase motors are commonly found in residential and small-scale applications, such as household appliances (e.g., refrigerators, air conditioners, and washing machines) and small tools (e.g., fans and power tools).

These are the key differences between 3-phase motors and single-phase motors. While 3-phase motors offer advantages in terms of efficiency, starting torque, and power rating, single-phase motors are suitable for smaller-scale applications and residential use. The selection of the motor type depends on the specific requirements of the application and the availability of the appropriate power supply.

3 phase motor

What maintenance practices are essential for prolonging the lifespan of a 3-phase motor?

Proper maintenance is crucial for prolonging the lifespan and ensuring the reliable performance of a 3-phase motor. Here are some essential maintenance practices that should be followed:

  • Regular Cleaning: Keep the motor and its surrounding area clean and free from dust, dirt, and debris. Regularly inspect and clean the motor’s exterior, ventilation openings, and cooling fins. This helps prevent the accumulation of contaminants that can interfere with the motor’s cooling and ventilation, leading to overheating and reduced efficiency.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication intervals and use the specified lubricants. Proper lubrication of bearings, gears, and other moving parts reduces friction, minimizes wear and tear, and ensures smooth operation. Inspect and replenish lubricants as needed, taking care not to over-lubricate, which can cause excessive heat buildup.
  • Vibration Analysis: Monitor motor vibrations regularly using vibration analysis techniques. Excessive vibration can indicate misalignment, worn bearings, or other mechanical issues. By detecting and addressing vibration problems early on, potential failures can be prevented, and the motor’s lifespan can be prolonged.
  • Electrical Inspections: Periodically inspect the motor’s electrical connections, terminals, and wiring for signs of wear, loose connections, or overheating. Tighten any loose connections and address any abnormalities promptly. Electrical inspections help prevent electrical failures and ensure safe and efficient motor operation.
  • Temperature Monitoring: Monitor the motor’s operating temperature using temperature sensors or thermal imaging. Abnormally high temperatures can indicate issues such as overload, insufficient cooling, or bearing problems. Regular temperature monitoring allows for timely identification of potential problems and the implementation of corrective measures.
  • Alignment and Balancing: Ensure the motor is properly aligned with the driven equipment, such as pumps or fans. Misalignment can cause excessive stress on the motor shaft and bearings, leading to premature failure. Additionally, balance any rotating components, such as fan blades or impellers, to reduce vibrations and strain on the motor.
  • Inspect and Replace Worn Parts: Regularly inspect the motor’s components, such as belts, pulleys, brushes, and capacitors, for signs of wear, damage, or deterioration. Replace any worn or damaged parts promptly to prevent further damage to the motor and ensure optimal performance.
  • Preventive Maintenance Schedule: Establish a preventive maintenance schedule based on the manufacturer’s recommendations and the motor’s operating conditions. This schedule should include routine inspections, lubrication, cleaning, and testing. Adhering to a regular maintenance routine helps identify potential issues early on and allows for timely repair or replacement, thus extending the motor’s lifespan.
  • Training and Documentation: Ensure that maintenance personnel are properly trained in motor maintenance procedures and safety protocols. Maintain detailed documentation of maintenance activities, including dates, observations, and performed tasks. This documentation provides a historical record of maintenance activities and facilitates troubleshooting and future maintenance efforts.
  • Environmental Considerations: Protect the motor from harsh environmental conditions, such as excessive heat, humidity, dust, or corrosive substances. If the motor is exposed to such conditions, consider implementing protective measures, such as enclosures, ventilation systems, or sealing, to safeguard the motor and prolong its lifespan.

By implementing these maintenance practices, motor owners can maximize the lifespan, reliability, and performance of their 3-phase motors. Regular inspections, cleaning, lubrication, and addressing any identified issues promptly are key to ensuring optimal motor operation and minimizing the risk of unexpected failures.

3 phase motor

Can 3-phase motors be customized for specific torque and speed requirements?

Yes, 3-phase motors can be customized to meet specific torque and speed requirements. Here’s a detailed explanation of their customization capabilities:

  • Motor Design:
    • 3-phase motors can be designed and manufactured to meet specific torque and speed requirements. Motor manufacturers can customize the motor’s physical characteristics, such as the number of poles, winding configuration, and core materials, to optimize its performance for the desired torque and speed range.
    • The motor’s design parameters, such as the diameter and length of the stator and rotor, can be adjusted to achieve the desired torque output. Similarly, the number of windings and their arrangement can be tailored to provide the necessary speed characteristics.
  • Winding Configurations:
    • The winding configuration of a 3-phase motor significantly influences its torque and speed characteristics. By customizing the winding arrangement and connections, motor manufacturers can achieve specific torque and speed requirements.
    • For example, a motor with a delta (Δ) winding configuration tends to provide higher starting torque, making it suitable for applications that require high initial torque. On the other hand, a motor with a star (Y) winding configuration may offer better speed regulation and efficiency.
  • Motor Control:
    • 3-phase motors can be controlled and adjusted using various control devices and techniques to achieve specific torque and speed requirements. Control methods include voltage control, frequency control, and pulse width modulation (PWM) control.
    • By using control devices such as variable frequency drives (VFDs) or adjustable speed drives (ASDs), the frequency and voltage supplied to the motor can be adjusted in real-time, allowing precise control over motor speed and torque output.
  • Mechanical Modifications:
    • In some cases, mechanical modifications can be made to 3-phase motors to customize their torque and speed characteristics. For example, the addition of gearboxes or speed reducers can allow a motor to generate higher torque at lower speeds, or vice versa.
    • By incorporating mechanical modifications, manufacturers can fine-tune the motor’s performance to match specific application requirements, achieving the desired torque and speed range.

Overall, 3-phase motors can be customized to meet specific torque and speed requirements through motor design, winding configurations, motor control techniques, and mechanical modifications. Motor manufacturers can tailor these aspects to optimize the motor’s performance for a wide range of industrial applications, providing the necessary torque and speed characteristics needed for specific requirements.

China factory Mirco Brushless BLDC DC Induction Electric High Speed Power Fan Motor with RoHS CE Single Phase AC Electrical Fan Permanent Magnet DC Motor for Solar Panel   manufacturer China factory Mirco Brushless BLDC DC Induction Electric High Speed Power Fan Motor with RoHS CE Single Phase AC Electrical Fan Permanent Magnet DC Motor for Solar Panel   manufacturer
editor by CX 2024-04-17